Essay sample

The Significance of Organic Compounds in Our Daily Lives

Free ideas for

An organic compound is a compound whose molecules contain C, and usually at least one C-C or C-H bond. Very small carbon-containing molecules that do not follow the above rules, such as \(\text{CO}_{2}\) and simple carbonates, are considered inorganic. Life on earth would not be possible without carbon. Other than water, most molecules of living cells are carbon-based, and hence are referred to as organic compounds. The main classes of organic compounds we will investigate in this section include carbohydrates, lipids, proteins and nucleic acids.Each of these classes of compounds consists of large molecules built from small subunits. The smallest of these subunits is called a monomer. Several monomers bond together to form polymers

Each of these polymers is characterised by a specific structure owing to the chemical bonds formed.

Free ideas for

Organic compounds essential to human functioning include carbohydrates, lipids, proteins, and nucleotides. These compounds are said to be organic because they contain both carbon and hydrogen. Carbon atoms in organic compounds readily share electrons with hydrogen and other atoms, usually oxygen, and sometimes nitrogen. Carbon atoms also may bond with one or more functional groups such as carboxyls, hydroxyls, aminos, or phosphates. Monomers are single units of organic compounds. They bond by dehydration synthesis to form polymers, which can in turn be broken by hydrolysis. Carbohydrate compounds provide essential body fuel. Their structural forms include monosaccharides such as glucose, disaccharides such as lactose, and polysaccharides, including starches (polymers of glucose), glycogen (the storage form of glucose), and fiber. All body cells can use glucose for fuel. It is converted via an oxidation-reduction reaction to ATP. Lipids are hydrophobic compounds that provide body fuel and are important components of many biological compounds. Triglycerides are the most abundant lipid in the body, and are composed of a glycerol backbone attached to three fatty acid chains. Phospholipids are compounds composed of a diglyceride with a phosphate group attached at the molecule’s head. The result is a molecule with polar and nonpolar regions. Steroids are lipids formed of four hydrocarbon rings. The most important is cholesterol. Prostaglandins are signaling molecules derived from unsaturated fatty acids. Proteins are critical components of all body tissues. They are made up of monomers called amino acids, which contain nitrogen, joined by peptide bonds

Protein shape is critical to its function. Most body proteins are globular. An example is enzymes, which catalyze chemical reactions. Nucleotides are compounds with three building blocks: one or more phosphate groups, a pentose sugar, and a nitrogen-containing base. DNA and RNA are nucleic acids that function in protein synthesis. ATP is the body’s fundamental molecule of energy transfer. Removal or addition of phosphates releases or invests energy.

Free ideas for

A comprehensive review of quantitative structure-activity relationships (QSAR) allowing the prediction of the fate of organic compounds in the environment from their molecular properties was done (Loonen H. Lindgren F. Hansen B., 2006). The considered processes were water dissolution, dissociation, volatilization, retention on soils and sediments (mainly adsorption and desorption), degradation (biotic and abiotic), and absorption by plants. A total of 790 equations involving 686 structural molecular descriptors are reported to estimate 90 environmental parameters related to these processes. A significant number of equations was found for dissociation process (pKa), water dissolution or hydrophobic behavior (especially through the KOW parameter), adsorption to soils and biodegradation. A lack of QSAR was observed to estimate desorption or potential of transfer to water. Among the 686 molecular descriptors, five were found to be dominant in the 790 collected equations and the most generic ones: four quantum-chemical descriptors, the energy of the highest occupied molecular orbital (EHOMO) and the energy of the lowest unoccupied molecular orbital (ELUMO), polarizability (α) and dipole moment (μ), and one constitutional descriptor, the molecular weight

Keeping in mind that the combination of descriptors belonging to different categories (constitutional, topological, quantum-chemical) led to improve QSAR performances, these descriptors should be considered for the development of new QSAR, for further predictions of environmental parameters. The high number and the wide diversity of manmade organic compounds (e.g., pesticides, pharmaceuticals, polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB)) that have been or will be released in the environment constitute the most important challenge for research on the fate and effects of these contaminants. About 100,000 substances have been registered for use in United States or Europe over the past 30 years (Hansen et al., 1999b; Muir and Howard, 2006).

Free ideas for

In sum, organic chemistry is the study of carbon compounds, which extends to understanding chemical reactions in living organisms and products derived from them. There are numerous examples of organic chemistry in everyday life. Although both are used for cleaning, soap and detergent are two different examples of organic chemistry. Soap is made by the saponification reaction, which reacts to hydroxide with an organic molecule (e.g., an animal fat) to produce glycerol and crude soap. While soap is an emulsifier, detergents tackle oily, greasy (organic) soiling mainly because they are surfactants, which lower the surface tension of the water and increase the solubility of organic compounds

Most products you use involve organic chemistry. Your computer, furniture, home, vehicle, food, and body contain organic compounds. Every living thing you encounter is organic. Inorganic items, such as rocks, air, metals, and water, often contain organic matter, too.

Free ideas for

Long X. Niu J. Estimation of gas-phase reaction rate constants of alkylnaphthalenes with chlorine, hydroxyl and nitrate radicals. Chemosphere. 2007

Loonen H. Lindgren F. Hansen B. Karcher W. Biodegradability prediction. Kluwer Academic Publishers; Dordrecht, NL: 1996. pp. 105–114. 1996.

MacElroy N.R. Jurs P.C. Prediction of aqueous solubility of heteroatom-containing organic compounds from molecular structure. Journal of Chemical Information and Computer Science. 2001

Mackay D. Hubbarde J. Webster E. The role of QSARs and fate models in chemical hazard and risk assessment. Environmental Toxicology and Chemistry. 2003

Was this essay example useful for you?

Do you need extra help?

Order unique essay written for you
essay statistic graph
Topic Popularity